QUIZ 24 SOLUTIONS: LESSON 32
 NOVEMBER 19, 2018

Write legibly, clearly indicate the question you are answering, and put a box or circle around your final answer. If you do not clearly indicate the question numbers, I will take off points. Write as much work as you need to demonstrate to me that you understand the concepts involved. If you have any questions, raise your hand and I will come over to you.

Let

$$
A=\left[\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right], B=\left[\begin{array}{ccc}
2 & 3 & -1 \\
0 & 1 & -2
\end{array}\right], C=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 1 \\
-2 & -2 & -2
\end{array}\right]
$$

Evaluate the following if they exist. If they do not exist, write does not exist.

1. $[3 \mathrm{pts}] A B-B$

Solution: Since A is a 2×2 matrix and B is a 2×3 matrix, $A B$ exists and is a 2×3 matrix. So we write

$$
\begin{aligned}
A B-B & =\left[\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 3 & -1 \\
0 & 1 & -2
\end{array}\right]-\left[\begin{array}{ccc}
2 & 3 & -1 \\
0 & 1 & -2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-1(2)+1(0) & -1(3)+1(1) & -1(-1)+1(-2) \\
0(2)+1(0) & 0(3)+1(1) & 0(-1)+1(-2)
\end{array}\right]-\left[\begin{array}{lll}
2 & 3 & -1 \\
0 & 1 & -2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-2 & -2 & -1 \\
0 & 1 & -2
\end{array}\right]-\left[\begin{array}{lll}
2 & 3 & -1 \\
0 & 1 & -2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-2-2 & -2-3 & -1-(-1) \\
0-0 & 1-1 & -2-(-2)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-4 & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

2. [3 pts] $3 A-A^{2}$

Solution: We write

$$
\begin{aligned}
3\left[\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right]-\left[\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right] & =\left[\begin{array}{cc}
3(-1) & 3(1) \\
3(0) & 3(1)
\end{array}\right]-\left[\begin{array}{cc}
-1(-1)+0(1) & -1(1)+1(1) \\
0(-1)+1(0) & 0(1)+1(1)
\end{array}\right] \\
& =\left[\begin{array}{cc}
-3 & 3 \\
0 & 3
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-3-1 & 3-0 \\
0-0 & 3-1
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{cc}
-4 & 3 \\
0 & 2
\end{array}\right]
$$

3. [4 pts] $2 B+B C$

Solution: Since B is a 2×3 matrix and C is a 3×3 matrix, $B C$ exists and is a 2×3 matrix. Write

$$
\begin{aligned}
& 2\left[\begin{array}{lll}
2 & 3 & -1 \\
0 & 1 & -2
\end{array}\right]-\left[\begin{array}{ccc}
2 & 3 & -1 \\
0 & 1 & -2
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 1 \\
-2 & -2 & -2
\end{array}\right] \\
& =\left[\begin{array}{lll}
2(2) & 2(3) & 2(-1) \\
2(0) & 2(1) & 2(-2)
\end{array}\right] \\
& \\
& -\left[\begin{array}{lll}
2(-1)+3(0)+(-1)(-2) & 2(0)+3(1)+(-1)(-2) & 2(1)+3(1)+(-1)(-2) \\
0(-1)+1(0)+(-2)(-2) & 0(0)+1(1)+(-2)(-2) & 0(1)+1(1)+(-2)(-2)
\end{array}\right] \\
& =\left[\begin{array}{lll}
4 & 6 & -2 \\
0 & 2 & -4
\end{array}\right]+\left[\begin{array}{lll}
0 & 5 & 7 \\
4 & 5 & 5
\end{array}\right] \\
& =\left[\begin{array}{lll}
4+0 & 6+5 & -2+7 \\
0+4 & 2+5 & -4+5
\end{array}\right] \\
& =\left[\begin{array}{lll}
4 & 11 & 5 \\
4 & 7 & 1
\end{array}\right]
\end{aligned}
$$

